According to the US National Academy of Sciences, the Earth’s surface temperature has risen by about 1 degree Fahrenheit in the past century, with accelerated warming during the past two decades. There is new and stronger evidence that most of the warming over the last 50 years is attributable to human activities. (Here is the link to an excellent National Academies report, understanding and responding to climate change.) Human activities have altered the chemical composition of the atmosphere through the buildup of greenhouse gases—primarily carbon dioxide, methane, and nitrous oxide. The heat-trapping property of these gases is undisputed although uncertainties exist about exactly how earth’s climate responds to them.
Energy from the sun drives the earth’s weather and climate, and heats the earth’s surface; in turn, the earth radiates energy back into space. Atmospheric greenhouse gases (water vapor, carbon dioxide, and other gases) trap some of the outgoing energy, retaining heat somewhat like the glass panels of a greenhouse.
Without this natural “greenhouse effect,” temperatures would be much lower than they are now, and life as known today would not be possible. Instead, thanks to greenhouse gases, the earth’s average temperature is a more hospitable 60°F. However, problems may arise when the atmospheric concentration of greenhouse gases increases.
Since the beginning of the industrial revolution, atmospheric concentrations of carbon dioxide have increased nearly 30%, methane concentrations have more than doubled, and nitrous oxide concentrations have risen by about 15%. These increases have enhanced the heat-trapping capability of the earth’s atmosphere. Sulfate aerosols, a common air pollutant, cool the atmosphere by reflecting light back into space; however, sulfates are short-lived in the atmosphere and vary regionally.
Why are greenhouse gas concentrations increasing? Scientists believe that the combustion of fossil fuels and other human activities are the primary reason for the increased concentration of carbon dioxide. Plant respiration and the decomposition of organic matter release more than 10 times the CO2 released by human activities; but these releases have generally been in balance during the centuries leading up to the industrial revolution with carbon dioxide absorbed by terrestrial vegetation and the oceans.
What has changed in the last few hundred years is the additional release of carbon dioxide by human activities. Fossil fuels burned to run cars and trucks, heat homes and businesses, and power factories are responsible for about 98% of U.S. carbon dioxide emissions, 24% of methane emissions, and 18% of nitrous oxide emissions. Increased agriculture, deforestation, landfills, industrial production, and mining also contribute a significant share of emissions. The United States emits about one-fifth of total global greenhouse gases.
Estimating future emissions is difficult, because it depends on demographic, economic, technological, policy, and institutional developments. Several emissions scenarios have been developed based on differing projections of these underlying factors. For example, by 2100, in the absence of emissions control policies, carbon dioxide concentrations are projected to be 30-150% higher than today’s levels.
(Special thanks to the US Environmental Protection Agency for this excellent, clear and concise overview of climate change.